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Abstract

By employing results of direct numerical simulations, it is possible to examine entropy generation due to friction in the viscous layers
of turbulent flows with significant streamwise pressure gradients, both for boundary layers and channels. About two-thirds or more of
the entropy generation per unit surface area S00 occurs there. Increasing the pressure gradient increases direct dissipation and decreases
turbulent dissipation (in wall coordinates). The integral of the entropy generation rate per unit surface area to the edge of the viscous
layer is relatively insensitive to pressure gradients for channels but decreases moderately for boundary layers.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The local (pointwise) entropy generation rate per unit
volume S000 is a key to improving many energy processes
and applications [1]. In developing his reciprocal relations
for irreversible processes, Onsager [2] extended Lord Ray-
leigh’s ‘‘principle of least dissipation of energy” and indi-
cated that the rate of increase of entropy plays the role
of a potential. Thus, entropy generation (or ‘‘production”

[3]) may be used as a parameter to measure a system’s
departure from reversibility. Bejan [1] has suggested that
real systems which owe their thermodynamic imperfections
to fluid flow, heat transfer and mass transfer irreversibili-
ties be optimized by minimizing their entropy generation.
0017-9310/$ - see front matter � 2007 Published by Elsevier Ltd.
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This approach has been applied to compact heat exchang-
ers, power plants, natural convection, rotating bodies,
enhanced heat transfer surfaces, impinging jets, convection
in general and other thermal systems.

Kock and Herwig [4] suggest that predicting the efficient
use of energy in thermal systems requires accounting for
the second law of thermodynamics since the loss of avail-
able work [5] is proportional to the amount of entropy pro-
duced (e.g., via the Gouy [6]–Stodola [7] theorem cited by
Bejan). Therefore, apparatus producing less entropy by
irreversibilities. destroys less available work, increasing
the efficiency. Neumann et al. [8], Kock and Herwig and
others are using computational fluid dynamics (CFD)
codes to predict entropy generation for optimization by
minimizing it. Since S000 determines the localized contribu-
tion to energy losses or reduction in the availability of
energy [9,10], insight into the dominant loss sources and
their locations can allow reducing them intelligently,
thereby improving efficiency. These CFD studies seek to
identify the regions of maximum entropy production so
they may be attacked and reduced.
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Nomenclature

ACS flow area
D diameter
Dh hydraulic diameter, 4ACS/PW

gc units conversion factor, e.g., 1 kg m /(N s2),
32.1739 lbm ft/(lbf s2)

G mean mass flux, _m=ACS

_m mass flow rate
P perimeter; PW, wetted perimeter
p pressure
_Q heat transfer rate
s specific entropy (i.e., per unit mass)
S entropy, entropy generation rate
T temperature
U, V, W mean velocity components in streamwise, wall-

normal and spanwise directions, respectively
Vb bulk or mixed-mean streamwise velocity, G/q
u, v, w velocity fluctuations about means in streamwise,

wall-normal and spanwise directions, respec-
tively

us friction velocity, (gcsw/q)1/2

uv Reynolds shear stress
x, y, z coordinates in streamwise, wall-normal and

spanwise directions, respectively

Non-dimensional quantities

cf skin friction coefficient, 2gcsw=ðqU2
1Þ or 2gcqsw/

G2

Kp streamwise pressure gradient, ðm=qu3
sÞdp=dx

Kv acceleration parameter, ðm=V 2
bÞðdV b=dxÞ or

ðm=U 2
1ÞdU 2

1=dx
Re Reynolds number, 4 _m=PDl; ReDh, based on

hydraulic diameter, GDh/l; Reh, based on
momentum thickness, U1h/m

Res distance from wall to centerplane, centerline,
etc., ycus/m

(S00)+ entropy generation rate per unit surface area,
TS00=ðqu3

sÞ

(S
000
)+ pointwise volumetric entropy generation rate,

T mS000=ðqu4
sÞ

y+ distance from wall
e+ turbulent dissipation of turbulent kinetic energy,

me=u4
s

Greek symbols

d boundary layer thickness
e dissipation of turbulence kinetic energy; eu,

pseudo dissipation [21]
U viscous dissipation function
l absolute viscosity
m kinematic viscosity, l/q
q density
s shear stress; sw, wall shear stress
h momentum thickness

Superscripts
(_)+ normalization by wall units, m and us

(_)0 per unit length

(_)00 per unit surface area

(_)000 per unit volume

(—) time mean value

Subscripts

b bulk or mixed-mean quantity (one-dimensional)
c centerplane, centerline
cs cross section
cv control volume
Dh evaluated with hydraulic diameter Dh

gen generation
in evaluated at inlet, entry
out outflow
w wall
1 freestream value

D.M. McEligot et al. / International Journal of Heat and Mass Transfer 51 (2008) 1104–1114 1105
In the present study, we primarily examine entropy gen-
eration due to shear stresses in idealized ‘‘unheated,” fully-
developed, turbulent channel flows between infinitely-wide
flat plates. However, for comparison purposes and to eval-
uate applicability of the results, we also treat two-dimen-
sional turbulent boundary layers over a classical flat plate
with both negligible and favorable pressure gradients in
the streamwise direction. Fluid properties are idealized as
constant.

We concentrate on the viscous layer because it is typi-
cally the region where the largest gradients occur and the
production of turbulence is greatest. Following Bradshaw
[11], we are here defining the viscous layer as the region
where viscous effects are significant, but not necessarily
dominant, typically to y+ about thirty in a classical zero-
pressure gradient case (it includes the ‘‘laminar” and
‘‘buffer” sublayers in some investigators’s terminology).
The major resistances to momentum, energy and mass
transfer occur in this layer – and the pointwise entropy gen-
eration rate is greatest here as well.

As will be seen, turbulent channel flows with significant
(non-dimensional) streamwise pressure gradients have low
Reynolds numbers – and vice versa. Knowledge of such
flows has been important in the design of the high temper-
ature engineering test reactor (HTTR) in Japan since its
flow rate is ‘‘low” to give a high outlet temperature Conse-
quently, the outlet Reynolds number is about 3500 at
design operating conditions. For other gas-cooled-reactors
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the low-Reynolds-number turbulent range can become
important during natural circulation in decay heat removal
by passive cooling and during hypothetical transient acci-
dent scenarios.

Kock and Herwig [4] applied the direct numerical simu-
lations (DNS) of Kawamura et al. [12] for channel flow at
Res = 395 to develop a relation for entropy generation in
the viscous layer to be used with high-Reynolds-number
CFD codes employing wall functions. With the DNS tabu-
lations of Spalart [13,14], McEligot et al. [15] examined the
effects of Reynolds number and favorable streamwise pres-
sure gradients on entropy generation rates across turbulent
boundary layers on flat plates. They found that, with neg-
ligible pressure gradients, results presented in wall coordi-
nates are predicted to be near ‘‘universal” in the viscous
layer while this apparent universality disappears when a
significant pressure gradient is applied.

Key relations for evaluating entropy generation are pre-
sented in Section 2 which follows. They are applied first for
the classical case of a negligible streamwise pressure gradi-
ent, found at high Reynolds numbers in channels, and then
to favorable pressure gradients, approaching laminariza-
tion. The bases of the examination are the direct numerical
simulations by Kawamura and coworkers [16,17] for fully-
developed turbulent flow in channels and by Spalart [13,14]
for external turbulent boundary layers. Comparison then
allows determination when predictions of entropy genera-
tion from direct simulations of turbulent channel flows
can and cannot be applied for the viscous layers of external
turbulent boundary layers. We then summarize with some
concluding remarks.

2. Background

Entropy appears in the second law of thermodynamics
which can be written for a flowing open system, in terms
of the ‘‘rate of creation” of entropy by London [18], as

RoCðSÞ ¼ Sout þ ðdScv=dtÞ � Sin P Rð _Q=T Þ
where _Q is the rate of heat transfer into the control volume
and T is the absolute temperature of the thermal reservoir
from which this heat transfer comes. As a measure of the
irreversibility, Bejan [1] and others define an entropy gener-
ation rate or rate of production of entropy [19]

Sgen ¼
X
ð _msÞout þ ðdScv=dtÞ �

X
ð _msÞin �

X
ð _Q=T ÞP 0

which can be seen to be the inequality, if any, between
RoC(S) and the reversible portion of entropy transfer with
heat into the system. Possible irreversible processes are rec-
ognized to include friction, heat transfer with significant
temperature gradients, combustion, etc.

For an isothermal, laminar pipe flow with no external
heating imposed. Bejan [1] and others suggest that the vol-
umetric entropy generation rate S000 can be estimated by
evaluating the viscous dissipation function U for the flow,

S000fyg ¼ ðlU=T Þ ¼ lðoU=oyÞ2=T
Throughout the remainder of this paper, the streamwise
velocity is represented as U + u, where upper and lower
case letters symbolize its mean value and the instantaneous
fluctuation about it, respectively; the normal velocity V + v

is treated in a similar fashion. (The braces {} are used to
indicate that S000 is considered to be a function of y.)

The time mean value of lU at a point in a flow with tur-
bulent fluctuations may be expanded to lU + qe where the
former represents viscous dissipation of mean-flow kinetic
energy (called ‘‘direct dissipation”) and the latter represents
dissipation of turbulent kinetic energy into thermal energy
(‘‘indirect” or turbulent dissipation) [20–23].
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When expressed in wall units, the pointwise entropy gener-
ation rate for a two-dimensional boundary layer can be
written as

ðS000fyþgÞþ ¼ ½ðoUþ=oyþÞ þ ðoV þ=oxþÞ�2 þ 2½ðoUþ=oxþÞ2

þ ðoV þ=oyþÞ2� þ eþ

where (S000)+ is defined as T mS000=ðqu4
sÞ and e+ is me=u4

s . For a
laminar boundary layer on a flat plate without freestream
turbulence, S000 and its integrals can be calculated from
the Blasius or Pohlhausen solutions [24]. For a fully-devel-

oped turbulent flow between infinitely-wide parallel plates
this relation reduces to

ðS000fyþgÞþ ¼ ðoUþ=oyþÞ2 þ eþ

The mean velocity components V and W are identically
zero for this idealization.

The prediction of pointwise entropy generation rate
(S000{y+})+ is desired to identify regions where most losses
occur (large values of S000) and to deduce the entropy gen-
eration rate per unit surface area – and, ultimately, S0 or
S over the entire surface. In wall coordinates, the entropy
generation per unit surface area value can be evaluated as

ðS00fyþgÞþ ¼ ðTS 00=ðqu3
sÞÞ ¼

Z yþ

0

ðS000fyþgÞþdyþ

Previous studies of turbulent flows with favorable
streamwise pressure gradients have been summarized by
Narasimha and Sreenivasan [25], Spalart [13], McEligot
and Eckelmann [26] and others. Based on definitions, con-
tinuity and momentum equations and empirical relations,
one can form approximate relations between some of the
non-dimensional parameters suggested as governing flows
with streamwise pressure gradients. Streamwise accelera-
tion in a boundary layer is often represented by an acceler-
ation parameter [27] defined as

Kv ¼ ðm=U 2
1ÞdU1=dx



Fig. 1. Effects of favorable streamwise pressure gradients on mean
velocity profiles in turbulent channel and boundary layer flows. DNS of
Kawamura and coworkers for channels (solid curves) and Spalart for
boundary layers (long dashes) compared to channel flow measurements at
�Kp � 0.006 by Thiele and Eckelmann [35] and �Kp � 0.0012 by Durst
et al. [36].
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For a boundary layer flow, one can show Kv = �(cf/2)3/2Kp

where Kp is the non-dimensional streamwise pressure
gradient.

For fully-developed turbulent flow in a duct, Kv, is zero by
definition and the pressure-gradient parameter may be esti-
mated as

Kp ¼ ðm=qu3
sÞdp=dx � �20:1 Re�ð7=8Þ

Dh

by employing a Blasius correlation [28]. Consequently,
some authors may have interpreted ‘‘pressure-gradient
effects” as ‘‘low-Reynolds-number effects” and others
may not have realized that their fully-developed internal
flow could have entailed significant streamwise pressure
gradients. The distance yc to the centerplane, centerline
or other thickness measure can be represented as

yþc ¼ ðycus=mÞ ¼ ðyc=DhÞReDhðcf=2Þ1=2 � 0:20ðyc=DhÞRe7=8
Dh

This quantity is also denoted as Res by some investigators
(e.g., Kim et al. [29], Abe et al. [16]).

The likelihood of streamwise pressure gradients affecting
the viscous layer was discussed by McEligot and Eckel-
mann [26]. The governing momentum equation for a
two-dimensional boundary layer may be written as

UþðoUþ=oxþÞ þ V þðoUþ=oyþÞ ¼ �Kp þ ðosþ=oyþÞ

From this momentum equation, one sees the distribution
of o

þsfyþg=oyþ will be a function of Kp alone provided
the convective terms are zero or negligible. Fully-developed
flows in tubes, parallel-plate channels and ducts inherently
satisfy this requirement.

Near the wall, the solution for the total shear stress var-
iation can be approximated [30,31] as

sþfyþg ¼ ðsfyþg=sWÞ

¼ 1þ Kpyþ½1� ðcf=ð2yþÞÞ
Z yþ

0

ðUþÞ2dyþ�

For a fully-developed flow in a duct or tube, the convective
terms become zero as noted and this solution reduces to

sþfyþg ¼ sfyþg=s Wð Þ ¼ 1þ Kpyþ

For a channel flow one can see that �Kp ¼ ð1=yþCÞ ¼
ð1=ResÞ. With �Kp � 0 (‘‘large” Res), the x-momentum
equation reduces to s+{y+} � 1 near the wall, i.e., the con-
stant shear layer assumption becomes valid, provided the
flow thickness is ‘‘large” enough.

For the effect of a pressure gradient to be considered
negligible in the viscous layer, one could establish a 5% cri-
terion that s+ still be greater than 0.95 or such at its edge
(say y+ � 30). This constraint translates to requirements
such as �Kp < �0.0017, Res > �600 and, for tubes or
ducts, ReDh > �46,000. McEligot and Eckelmann suggest
that, for the viscous layer behavior to be similar in various
geometries and flows, one needs (1) the viscous layer to be
small relative to geometric scales in the flow and (2) to have
the same distribution of os+{y+}/oy+ through the viscous
layer. In a comparable study, Nieuwstadt and Bradshaw
[32] showed that viscous layer statistics can be expected
to be approximately equivalent in different geometries if
their values of Res are the same so that s+{y+} would be
about the same in both geometries (provided the outer
boundary is not too close according to suggested criterion
(1) above).

The works of Senecal [33], Patel [28], McEigot et al. [34],
Spalart [13] and others have shown that the level of the
mean velocity profile in wall coordinates increases with
acceleration or a favorable pressure gradient. Fig. 1 dem-
onstrates this effect for three channel flow cases [16,17]
and two boundary layer flows [13] with varying pressure
gradients when compared to the boundary layer calcula-
tion for Reh = 1410 without acceleration and therefore
with �Kp identically zero [14]. The boundary layer predic-
tions are indicated by long dashes with the result for zero
pressure gradient (zpg) being the lowest. The channel flow
predictions are shown by the solid curves and the trends are
confirmed by the experiments of Thiele and Eckelmann [35]
and Durst et al. [36]. Compared to the zero pressure gradi-
ent reference, all show an increase of (U{y+})+ in the vis-
cous layer beginning near y+ of ten and differing
successively. For the boundary layer flows, one sees from
the momentum equation that the convective terms counter
the pressure gradient term so a given pressure gradient has
less effect on the total shear stress s+{y+} than the same
pressure gradient for a channel flow. (This effect increases
as y+ increases so there is less difference for y+ less than
ten or so.) Consequently, the boundary layer profile at
�Kp � 0.0019 differs less from the reference than does the
channel case at �Kp � 0.0013 = a lower pressure gradient.

For fully-developed turbulent pipe flow at high Rey-
nolds numbers, Bejan [1] derived an ‘‘universal” distribu-
tion of (S

000
{y+})+ by assuming the three-layer von
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Karman ‘‘universal velocity profile.” This assumption of an
asymptotic high-Reynolds-number profile is equivalent to
considering a low streamwise pressure gradient (lpg) and
a constant shear layer s{y} near the wall. He predicted that
for y+ > 30 the pointwise entropy generation rate would be
less than 15% of its wall value, decreasing as y+ increases
(his Figure 3.6), and that the contribution of the turbulent
dissipation would be about half the total (his Figure 3.8).
As noted by McEligot and Eckelmann [26], for low values
of �Kp (e.g., ‘‘high” Reynolds numbers), the viscous layer
of a turbulent boundary layer should show the same behav-
ior as the viscous layer in a pipe or channel flow. Conse-
quently, one would expect that for a turbulent boundary
layer, entropy generation would again be concentrated in
the viscous layer: the results of McEligot et al. [15] confirm
this suggestion.

It is seen above that the viscous layer of a turbulent
boundary layer is affected by both the streamwise pressure
gradient and the convective terms. In the earlier paper,
McEligot et al. showed that the entropy generation in the
viscous layer is consequently affected. To evaluate the
effects of pressure gradient without the complication of
streamwise acceleration, the primary objective of the present
study is taken to be the determination of the entropy gen-
eration in the viscous layers of fully-developed channel
flows as the pressure gradient is varied. A range of about
0.0016 < j�Kpj < 0.016 is provided by the simulations of
Kawamura and colleagues.

3. Entropy generation with low pressure gradients

The reasoning above leads to the expectation that at
‘‘high” Reynolds numbers a channel flow will have the same
behavior and, therefore, the same entropy generation in the
viscous layer as an external boundary layer with negligible
pressure gradient. The DNS of Spalart [14] at Reh = 1410
provides a good representation of the latter case. The
DNS database of Kawamura and colleagues for isothermal
turbulent channel flow at Res = yþc ¼ 640 forms the basis of
this comparison [16]; the flow was idealized as being fully-
developed between infinitely-wide parallel plates with the
Newtonian fluid having constant properties. This condition
corresponds to ReDh � 49,000 and �Kp � 0.0016 for the
streamwise pressure gradient. According to the order-of-
magnitude reasoning of McEligot and Eckelmann [26],
these viscous layer results should be reasonably applicable
to any geometry provided the characteristic dimension is
greater than about 600 in wall units, �Kp < 0.0017 and
ReDh > 46,000. The reduction in total shear stress across
the viscous layer is given by the quantity 30Kp or about
4.7% in this case, close to the constant shear layer approx-
imation for an asymptotically-high Reynolds number. The
calculations of Kock and Hcrwig [4] were for Res = 180
and 395 giving reductions of about 17% and 7.6% across
the viscous layer, i.e., somewhat less constant.

The direct numerical simulation solves the governing
Navier–Stokes and continuity equations in their three-
dimensional, unsteady forms without modeling any terms.
Consequently, it is not a ‘‘turbulence model.” Kawamura
and coworkers imposed periodic boundary conditions in
the streamwise and spanwise directions with the no-slip
condition at the walls. A finite difference method was
adopted for solution with a fourth-order central difference
scheme for the streamwise and spanwise directions and a
second-order central difference scheme in the wall-normal
direction. For time advancement, the Crank–Nicholson
method was applied for viscous terms with wall-normal
derivatives and the second-order Adams–Bashforth
method was employed for other terms. The time integra-
tion for ensemble averaging corresponded to about 14 res-
idence times after the flow reached a fully-developed state.

Spatial resolution for the grid was Dx+ = 800,
Dz+ = 400 and Dy+ was varied from 0.15 near the wall to
about eight at the centerplane. The staggered computa-
tional grid of 1024 � 256 � 1024 nodes covered a volume
of 12:8yþc � 2yþc � 6:4yþc .

From the Background considerations above, one sees
that profiles of mean velocity and of the dissipation of tur-
bulence kinetic energy are needed in order to calculate the
pointwise entropy generation rate,

ðS000Þþ ¼ ðoUþ=oyþÞ2 þ eþ

(The same relation evolves with boundary layer approxi-
mations.) Kawamura and others tabulate a ‘‘pseudo dissi-
pation” eþu (in the terms of Gersten and Herwig [21]); citing
Hinze [37], the desired dissipation e+ is called the ‘‘true dis-
sipation” by Wilcox [38]. For a fully-developed channel
flow, the difference is provided by a term common with vis-
cous diffusion,

e� eu ¼ mðo2v2=oy2Þ
which, therefore, cancels in the governing equation for tur-
bulence kinetic energy. From the DNS of Kim et al. [29] at
�Kp � 0.006 (Res � 180), Bradshaw and Perot [39] show
that the contribution of viscous diffusion is everywhere less
than about 2% of the dissipation rate and conclude that the
difference between the true dissipation rate and the pseudo
dissipation rate can be ignored, for all purposes of compu-
tation and discussion.

In the present study we formed e+ by calculating the sec-
ond derivative of ðv2fyþgÞþ from Kawamura’s (and Spal-
art’s) listings and adding it to the tabulated eþu . The term
ðv2fyþgÞþ is positive near the wall and becomes negative
near y+ about 15 and positive again at y+ > 160. The
resulting maximum difference between ‘‘true” and pseudo
dissipation is about 2–1/2% at y+ near five – where it is
small relative to direct dissipation from the mean motion
anyhow. A maximum negative value of about 1.3% occurs
near the edge of the viscous layer.

The direct dissipation from the mean motion (labeled
‘‘Mean”) and the turbulent dissipation e+ (labeled ‘‘Diss”)
are compared in Fig. 2. The logarithmic representation
emphasizes the viscous layer while still giving indication
of results well outside it. Logarithmic coordinates also



Fig. 2. Predictions of volumetric entropy generation rate and contributing
terms for a channel flow with a low streamwise pressure gradient (solid
curves) and a zpg boundary layer (dashed curves) from direct numerical
simulations of Abe et al. [16] and Spalart [14], respectively.

Fig. 3. Predictions of entropy generation rate per unit surface area for a
channel flow with a low streamwise pressure gradient (solid curve) and a
zpg boundary layer (dashed curve) from direct numerical simulations of
Abe et al. [16] and Spalart [14], respectively.
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make it easy to estimate per cent differences and, therefore,
relative importance of terms. Solid curves represent the
channel flow and the dashed ones are for the zpg boundary
layer at Reh = 1410. As expected, the channel predictions
at high Res agree closely, but not exactly, with those for
the zpg boundary layer.

In wall coordinates the contribution of direct (mean)
dissipation is unity at the wall. It dominates near the wall
while turbulent dissipation contributes about 20% to the
total. Consequently, the difference between true and
pseudo dissipation corresponds to less than one-half per
cent of the total in this region. Both direct and turbulent
dissipation decrease as y+ increases but the reduction of
direct dissipation is more rapid with respect to y than the
turbulent dissipation – so they become of about equal mag-
nitude near y+ � 14 or so. For larger values of y+, turbu-
lent dissipation becomes progressively more dominant.
By the edge of the viscous layer the contribution of the
mean motion is about negligible. Both direct and turbulent
dissipation are seen to decrease rapidly beyond this region.
Through the typical logarithmic layer and central core
region the total dissipation and therefore the entropy gen-
eration are essentially provided by the turbulent
dissipation.

In Fig. 1 the predicted mean velocity profile for the
channel flow (solid, �Kp � 0.0016) is slightly higher than
the reference boundary layer flow (dashed, �Kp � 0). Con-
sequently, its direct (mean) dissipation is slightly greater
for y+ about three to the edge of the viscous layer. How-
ever, its indirect (turbulent) dissipation is less. These two
countering results give close agreement for their sum
(S
000
)+ through the viscous layer: at y+ = 30 the difference

is only about 4%.
The pointwise entropy generation rate (S

000
)+ is repre-

sented by the highest curve(s) in Fig. 2. Since it is the
sum of direct and turbulent dissipation, in wall coordinates
it is of order unity in the linear layer (y+ < �5) It then
undergoes a sharp reduction through the rest of the viscous
layer. By y+ of thirty, the volumetric rate S000 is reduced to
about eight percent of its value at the wall and it continues
to decrease rapidly further away from the wall. This result
agrees with the approximate prediction of Bejan [1] for a
fully-developed, high-Reynolds-number pipe flow; his pipe
flow would correspond to a low value of �Kp, the non-
dimensional streamwise pressure gradient. Direct dissipa-
tion is reduced to less than one per cent of the wall value
of total dissipation by y+ � 100 but by then e+ is an
order-of-magnitude greater than the direct dissipation so
(S000)+ � e+ there.

As noted in Section 2, the integral with respect to y of
the pointwise entropy generation rate gives the entropy
generation rate per unit surface area (S00) which would be
sought by thermal fluid engineers. Fig. 3 demonstrates
the increase of (S00{y+})+ through the viscous layer. Since
(S000)+ ranges only from about 1.2–0.9 in the linear layer
(y+ < �5), the integral increases nearly linearly with respect
to y in that region. About 30% of the entropy generation
occurs in this layer. Beyond y+ � 5,S000 decreases sharply
with respect to y. By y+ � 20 the turbulent dissipation is
significantly greater than the direct dissipation due to the
mean motion so the contribution to S00 is then primarily
from turbulent dissipation. For these conditions, the total
ðS00fyþc gÞ

þ is about 19; by the edge of the viscous layer at
y+ � 30, approximately two-thirds has appeared (and
about three-quarters by y+ � 50). Beyond y+ � 100 the dis-
tance to the centerplane is still large in well units, but (S

000
)+

is small so the additional contribution to entropy genera-
tion per unit surface area (S00)+ is likewise small.

The solid curve in Fig. 3 provides the prediction for the
channel flow and again the dashed curve represents the ref-
erence boundary layer. While one can discriminate minor
differences, consistent with, those in (S000)+, they would



Fig. 4. Relative magnitudes of contributions to entropy generation with
favorable pressure gradients occurring in low-Reynolds-number channel
flow; same symbols for both families of curves.
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not be considered significant At the edge of the viscous
layer at y+ = 30 the agreement is within one percent.

In summary, the viscous layer results of Abe et al. [16] at
Res = 640 can be considered to be closely representative of
the viscous layer of a high-Reynolds-number turbulent wall
flow with negligible pressure gradient, particularly as S000

and S00 are concerned.

4. Entropy generation with favorable pressure gradients

As noted above, McEligot et al. [15] examined entropy
generation in the viscous layers of turbulent boundary lay-
ers with favorable pressure gradients and found significant
effects; in that case, the shear stress profile in the viscous
layer is affected both by the streamwise pressure gradient
and by convective terms in the x-momentum equation.
Accordingly, to evaluate entropy generation in the viscous
layer without the effects of the convective terms, the present
study concentrates on fully-developed channel flows. Nec-
essary quantities are provided for the range of about
0.0016 < j�Kpj < 0.016 by the DNS databases of Kawam-
ura and colleagues [16,17].

Fig. 1 and earlier studies demonstrate that the level of the
mean velocity profile in wall coordinates increases with a
favorable pressure gradient. Consequently, the contribution
of direct dissipation from the mean motion can be expected
to be greater with a favorable pressure gradient than with-
out. While the effect of the term �Kpy+ decreases the direct
dissipation in the linear layer (via oU+/oy+), one sees from
the slope of the mean velocity profile at larger y+ that this
effect is more than compensated by reduction of turbulent
momentum transfer as the pressure gradient increases.

For a two-dimensional boundary layer the terms for
production in the governing equation for turbulence
kinetic energy are

�q½u2ðoU=oxÞ � v2ðoU=oxÞ þ uvfðoU=oyÞ þ ðoV =oxÞg�
As indicated by Hinze [37], for a flow with velocity increas-
ing in the x-direction the first term promotes a decrease in
turbulence kinetic energy. With less production, there is
less turbulence kinetic energy to dissipate and the turbulent
dissipation term can be expected to decrease as well.

For the terms in the balances of Reynolds stresses near
the wall, Spalart [13] noted that the general levels were
lower in sink flow as implied. So the turbulent dissipation
should be reduced. The results of McEligot et al. confirmed
this expectation for turbulent boundary layers with favor-
able pressure gradients.

Antonia et al. [40] examined turbulent dissipation and
models thereof for turbulent channel flows at Res = 180
and 395 (�Kp � 0.0056 and 0.0025, respectively) as pre-
dicted by the DNS algorithm of Kim et al. [29]. Their
results show that, for this limited range, e+ decreased as
j�Kpj increased, consistent with the observations of Spalart
[13] for boundary layers.

The present comparisons are based on application of the
DNS databases of Kawamura and coworkers. Abe et al. [16]
treated Res = 180, 395 and 640 (0.0056 < j�Kpj < 0.0016) as
described earlier and their tabulations are currently avail-
able on an Internet web site maintained by Kawamura.
Tsukahara et al. [17] extended these results to �Kp � 0.016
(Res = 64); at their highest pressure gradients these flows
show some characteristics which could be considered to be
‘‘transitional.” At Res = 80.70 and 64 the predicted skin fric-
tion coefficients diverge below accepted turbulent correla-
tions and there are slight, reductions in the profiles of the
streamwise turbulence intensities. At Res = 80, time series
traces of u- and v-fluctuations show evidence of ‘‘turbulent
puffs” [41]. For Res = 110 and above (�Kp � 0.009 and
ReDh � 6600) good agreement was found with the correla-
tion of Dean [42]. These results are in agreement with the
measurements of Durst et al. [36] who found close agree-
ment with the correlation of Dean for ReDh = 6000
(Res = 102) and above – and found comparable behavior
of the streamwise turbulence intensities.

The effects of favorable pressure gradients on the two
contributions to entropy generation are demonstrated in
Fig. 4 for a range of cases. As implied by the mean velocity
profile behavior, direct dissipation (labeled ‘‘Mean”) from
the mean motion increases with respect to pressure gradi-
ent in the viscous layer. Near y+ � 20, it is about 40%
greater for �Kp � 0.009 (Res = 110) and over 200% greater
for �Kp � 0.016 (Res = 64) than for the lpg reference at
Res = 640. However, the contribution from turbulent dissi-
pation (labeled ‘‘Diss”) decreases as j�Kpj increases. Pre-
sumably, if j�Kpj were large enough – say greater than
0.025 or so [26], the flow would laminarize so turbulence
and its dissipation would disappear. While there is little
effect on direct dissipation from increase of �Kp from the
lpg reference of 0.0016 to the 0.0025 case used by Kock
and Herwig (not shown), there is an observable but small
effect on the indirect or turbulent dissipation at low values
of y+.
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The trends of the dissipation with respect to y+ are the
same as the pressure gradient varies but differ in magni-
tude. At each value of y+ the turbulent dissipation
decreases as pressure gradient increases. The turbulent dis-
sipation e+ decreases slightly across a region from the wall
to y+ � 15. Then it decreases more sharply with y+. For the
lpg cases, by y+ � 20 the turbulent dissipation is greater
Fig. 5. Pointwise (a) and areal (b) entropy generation rates with favorable
pressure gradients occurring in low-Reynolds-number channel flow;
symbols as in Fig. 4.

Table 1
Effects of streamwise pressure gradients on entropy generation rates in turbul

�Kp 0.00156 0.00253 0.00556 0.0
Res ¼ yþc 640 395 180 150
ReDh 48,900 28,300 11,400 924
KV 0 0 0 0
U+{30} 13.55 13.67 14.02 14.
(S000{30})+ 0.0913 0.0906 0.0864 0.0
(S000{60})+ 0.0397 0.0388 0.0333 0.0
(S00{30})+ 12.77 12.85 12.72 12.
(S00{40})+ 13.54 13.61 13.43 13.
(S00{50})+ 14.10 14.16 13.92 13.
(S00{60})+ 14.54 14.59 14.30 14.
ðS00fyþc gÞ

þ 18.87 17.84 15.87 –
than the direct dissipation due to the mean motion; for
the higher pressure gradients the two are of the same order
until nearer the edge of the viscous layer. Direct dissipation
is reduced to less than one per cent of the wall value of total
dissipation by y+ � 40 but by then e+ is significantly
greater than the direct dissipation so (S000)+ begins to
become approximately equal to e+. Beyond y+ � 100 for
the lpg cases the distance to the edge of the boundary layer
may still be large in wall units, but (S000)+ is small so the
contribution to entropy generation per unit surface area
(S00)+ is likewise small. These observations are consistent
with those for the external boundary layer by McEligot
et al. [15] but differ in detail and magnitudes at the same
non-dimensional pressure gradients.

The consequences of the countering effects on the two
types of dissipation are plotted in terms of (S000)+ and
(S00)+ in Fig. 5a and b and some key values are listed in
Table 1. One sees, that the pressure gradient does affect
entropy generation in the viscous layer but not to a large
extent. In general, since the trends with respect to pressure
gradient are in opposing directions for the mean and turbu-
lent dissipations, the variations of (S000)+ are less than of its
individual components. And these variations lead to con-
vergence of the curves for (S000{y+})+ so they become nearly
equal (crossing) near the edge of the viscous layer. As func-
tions of y+ the trends and orders-of-magnitude are the
same as for the low pressure gradients of Figs. 2 and 3.
Again S000 drops to less than 10% of its wall value by
y+ = 30 and over two-thirds or more of the entropy gener-
ation occurs in this viscous layer. From Table 1, one sees a
variation of (S00{30})+ from maximum to minimum of
about 13% but, with the exception of the highest pressure
gradient, the integration to (S00{30})+ gives a range of only
about 2%. This last observation has import for CFD ana-
lysts predicting entropy generation rates.

We conclude that non-dimensional entropy generation in
the viscous layer is affected by a favorable pressure gradient
but not to a great extent.

5. Application of viscous layer predictions

As suggested by Kock and Herwig [4,43], the direct
numerical simulations for the viscous layer can be
ent channel flows

0667 0.00909 0.0125 0.0143 0.0156
110 80 70 64

0 6580 4640 4040 3720
0 0 0 0

05 14.64 15.32 15.81 16.25
859 0.0816 0.0808 0.0793 0.0833
316 0.0253 0.0208 0.0191 0.0187
59 12.73 12.83 12.85 13.13
30 13.39 13.45 13.44 13.75
75 13.84 13.83 13.79 14.09
15 14.15 14.08 14.02 14.31

– 14.35 14.12 14.38



1112 D.M. McEligot et al. / International Journal of Heat and Mass Transfer 51 (2008) 1104–1114
employed in conjunction with CFD codes which use wall
functions and solve a partial differential equation for tur-
bulent dissipation (eu here). Fig. 6a and b presents the
behavior of the entropy generation rates S000 and S00 evalu-
ated at y+ = 30, the nominal edge of the viscous layer.
(There appears to be slight numerical scatter, likely from
the interpolations involved.) One sees that for both results
there are slight differences between channel predictions and
boundary layer predictions as the streamwise pressure gra-
dients become large. Large pressure gradients correspond
to low non-dimensional distances yþc and d+, to the center-
plane and the edge of the boundary layer, respectively. For
these cases, it has been suggested that the outer turbulent
flow region is not large enough for the viscous layer region
to become insensitive to the outer boundary condition.
Small Kp corresponds to high Reynolds numbers and vis-
cous layers thin relative to the thickness of the turbulent
Fig. 6. Effects of streamwise pressure gradients on volumetric entropy
generation rates at the edge of the nominal viscous layer (a) and entropy
generation within the viscous layer per unit surface area (b) in fully-
developed channel flow (circles) and in boundary layers on a flat plate
(squares and triangles).
region (i.e., distance to outer boundary). Thus, the channel
and boundary layer results converge as j�Kpj decreases.

As fair approximations, one can represent the predic-
tions at the nominal edge of the viscous layer (y+ = 30)
for favorable pressure gradients as

Pointwise entropy generation rate for channels with
�Kp < �0.009 and boundary layers with �Kp < �0.020

ðS000f30gÞþ � 0:095þ 1:7Kp

Areal entropy generation rate for channels with
�Kp < �0.014

ðS00f30gÞþ � 12:7 ð�1%Þ

and for boundary layers with �Kp < �0.020

ðS00f30gÞþ � 12:65þ 50Kp

For fully-developed channel flows these limits correspond
approximately to ReDh > �6600 for S000 and ReDh > �4200
for S00 or yþc > 110 and 70, respectively. These approximate
correlations for S00 are within 2% of each other for
�Kp < 0.004 (Res > 250): this limitation is slightly less
restrictive than the order-of-magnitude estimates suggested
by McEligot and Eckelmann. With fully-developed flow in
a duct of another cross section the asymptote would be the
same but the variation with pressure gradient may vary
slightly.

One of the main values of the comparisons in Fig. 6 is
the indication when predictions of entropy generation from
DNS of turbulent channel flows can and cannot be applied
for the viscous layers of external turbulent boundary lay-
ers. The results for S00 in Fig. 6b demonstrate that the cor-
relation suggested by Kock and Herwig [4] can be expected
to predict the entropy generation within the viscous layer
(S00{30})+ reasonably for high Reynolds numbers and
low pressure gradients although their value of
�Kp � 0.0025 (Res = 395) is not quite an asymptotic situa-
tion. (Their non-dimensional quantity is comparable to our
(S00)+ but is defined differently.)

Ultimately, the thermal designer desires to predict S00,
the entropy generation rate per unit surface area, for the
turbulent flow of interest. A CFD code can provide
oU{y}/oy and eu{y} beyond the node where the wall func-
tion is anchored; from these quantities S000{y} can be pre-
dicted beyond this node. The desired value is then given by

ðS00fyþgÞþ ¼ ðS00fyþ1 gÞ
þ þ

Z yþ

yþ
1

ðS000fyþgÞþdyþ

The value of S00 needed for an initial node at yþ1 ¼ 30 is gi-
ven by Fig. 6b or the correlations. If the code anchors its
wall function at a node closer than y+ = 30, the required
values of oU/oy and eu can be estimated at y+ = 30 by suit-
able interpolation (spline, logarithmic, quadratic or such)
and then the integration can proceed to larger y+. For
30 < yþ1 < 60, values can be interpolated from Table 1.



D.M. McEligot et al. / International Journal of Heat and Mass Transfer 51 (2008) 1104–1114 1113
6. Concluding remarks

By employing results of direct numerical simulations it
has been possible to examine entropy generation due to
friction in the viscous layers of turbulent flows with signif-
icant streamwise pressure gradients, both for boundary lay-
ers and channels.

Entropy generation due to friction occurs from viscous
dissipation of mean-flow kinetic energy (called ‘‘direct dis-
sipation”) and dissipation of turbulent kinetic energy into
thermal energy (‘‘indirect” or turbulent dissipation). We
concentrate on the viscous layer because it is typically the
region where the largest gradients occur and the produc-
tion of turbulence is greatest; major resistances to momen-
tum, energy and mass transfer occur in this layer – and the
pointwise entropy generation rate is greatest here as well.
(Here the viscous layer is defined as the region where vis-
cous effects are significant, but not necessarily dominant;
it includes the ‘‘laminar” and ‘‘buffer” sublayers in some
investigators’s terminology).

In wall coordinates the contribution of direct (mean)
dissipation is unity at the wall. It dominates near the wall
while turbulent dissipation contributes about 10–20% to
the total. Both direct and turbulent dissipation decrease
as y+ increases but the reduction of direct dissipation is
more rapid with respect to y than the turbulent dissipation
– so they become about equal within the viscous layer. For
larger values of y+, turbulent dissipation becomes progres-
sively more dominant. By the edge of the viscous layer the
contribution of the mean motion is negligible.

For the viscous layer, DNS calculations for Reh � 1410
without a pressure gradient are close to asymptotically-
high Reynolds number conditions. The thickness d+ is
about 650 so the viscous layer is small relative to the over-
all scale of the boundary layer and, therefore, is not
expected to be affected significantly by the outer boundary
condition. The non-dimensional total shear stress s+{y+} is
only reduced about 1–1/2% by the nominal edge of the vis-
cous layer at y+ � 30. This situation is close to the constant
shear layer idealization which is valid for high-Reynolds-
number flows. Thus, its distributions of (S

000
{y+})+ and

(S00{y+})+ would be approximately valid universally for
the viscous layers of smooth wall flows at higher Reynolds
numbers.

For a fully-developed channel flow, as the Reynolds
number is increased the (non-dimensional) streamwise
pressure gradient decreases and behavior in the viscous
layer approaches that of the constant shear layer approxi-
mation. Consequently, such viscous layer results approach
those of an asymptotic high-Reynolds-number boundary
layer. Comparison of the DNS predictions for channel flow
at Res = 640 (�Kp � 0.0016) with the DNS predictions for
a zpg turbulent boundary layer at Reh � 1410 confirms this
expectation for the entropy generation distributions. The
predictions of (S

000
{y+})+ are very close to each other but

differ slightly in detail. At these low pressure gradients
about 30% of the entropy generation per unit surface area
S00 occurs in the linear layer (y+ < �5) and about two-
thirds or more occurs within the viscous layer.

With significant pressure gradients the viscous layer of a
turbulent boundary layer is affected by the advection, by
the outer boundary (since d+ is ‘‘small”) and by the pres-
sure gradient; with fully-developed channels, behavior in
the viscous layer is affected by the pressure gradient and
the other wall but not by advection. One sees that the pres-
sure gradient does affect entropy generation in the viscous
layer but not to a large extent. Increasing the pressure gra-
dient increases the direct dissipation and decreases the tur-
bulent dissipation. Consequently, the variations of (S

000
)+

due to pressure gradients are less than of its individual
components. As functions of y+, the trends and order-of-
magnitude are the same as for the low pressure gradients.

From examination of the results for channels and
boundary layers with and without significant pressure gra-
dients, one sees that – at the edge of the viscous layer – the
pointwise entropy generation rate (S000{30})+ decreases as
the favorable pressure gradient increases. However, the
integral to this point (S00{30})+ is relatively insensitive to
pressure gradients for channels but decreases moderately
for boundary layers. Approximate correlations are devel-
oped for potential use with CFD codes. At a pressure gra-
dient of �Kp � 0.004, (S00{30})+ for the boundary layer
differs from the value for a channel by about 2%. There-
fore, below this level, results based on DNS for a channel
should be useful for external boundary layers provided
d+ > �600. Above this level of pressure gradient separate
predictions would be desirable for channels and boundary
layers.
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